National Drunk and Drugged Driving Prevention Month — December 1997

Persons who drive while impaired by alcohol or other drugs are a public health hazard to themselves and to others. During 1996, alcohol-related motor-vehicle crashes resulted in 17,126 deaths in the United States (1). From 1987 to 1996, the total number of traffic fatalities decreased by approximately 10\% (from 46,390 to 41,907, respectively), and the proportion of traffic fatalities that were alcoholrelated decreased by approximately 20% (51% versus 41%, respectively) (1,2). Despite these reductions, alcohol-related motor-vehicle crashes remain a leading cause of death for teenagers and young adults.

December has been designated National Drunk and Drugged Driving Prevention Month by the National Drunk and Drugged Driving Prevention Month Coalition, a nationwide public- and private-sector coalition for the prevention of crashes related to impaired driving. Additional information about National Drunk and Drugged Driving Prevention Month is available from the Impaired Driving Division, Office of Traffic Injury Control Programs (NTS-11), National Highway Traffic Safety Administration, 400 7th Street, S.W., Washington, DC 20590; telephone (202) 366-9588; World-Wide Web site http://www.nhtsa.dot.gov.

References

1. National Highway Traffic Safety Administration. Traffic safety facts, 1996: alcohol. Washington, DC: US Department of Transportation, National Highway Traffic Safety Administration, National Center for Statistics and Analysis, Research, and Development, 1997.
2. CDC. Reduction in alcohol-related traffic fatalities—United States, 1990-1992. MMWR 1993;42:905-9.

Alcohol-Related Traffic Fatalities Involving Children United States, 1985-1996

Motor-vehicle-related injuries are the leading cause of death for persons aged $1-24$ years in the United States (1). Although the relation between alcohol use and motor-vehicle-related deaths involving teenagers is well established (2), understanding of the role of alcohol in such deaths among younger children is limited. To characterize the involvement of alcohol in motor-vehicle-related deaths of U.S. children aged <15 years during 1985-1996, CDC analyzed data from the Fatality Analysis Reporting System (FARS) of the National Highway Traffic Safety Administration (NHTSA). This report summarizes the results of that analysis, which indicate that approximately one fourth of all traffic deaths among children aged <15 years involved alcohol and that in nearly two thirds of passenger deaths involving a legally drunk driver, the child was in the car driven by the legally drunk driver.

FARS is a census of police-reported traffic crashes on public roadways that result in the death of at least one occupant or nonmotorist within 30 days of the crash. NHTSA considers a fatal motor-vehicle crash to be alcohol related if either a driver or nonoccupant (e.g., pedestrian) had a blood alcohol concentration (BAC) $\geq 0.01 \mathrm{~g} / \mathrm{dL}$. Because BACs are not available for all persons involved in fatal crashes, NHTSA estimates the number of alcohol-related traffic fatalities based on a discriminant analysis of information from all cases for which driver or nonoccupant BAC data are available (3). Age adjustment of rates was performed by the direct method using the 1970 U.S. population.

During 1985-1996, of the 35,547 children aged <15 years who died in motor-vehicle crashes, 8482 (24%) were killed in alcohol-related motor-vehicle crashes. From 1985 to 1996, the proportion of all motor-vehicle-related deaths that involved alcohol decreased from 25% (773 of 3126 deaths) to 21% (568 of 2761). The death rate per 100,000 population attributable to alcohol-related crashes declined among children aged $0-4,5-9$, and $10-14$ years (Figure 1). Among all children aged <15 years, the average annual death rate from alcohol-involved crashes was 1.3 times greater for males than for females (1.47 compared with 1.11).

During 1985-1996, a total of 5771 children died while traveling as occupants in a motor vehicle involved in an alcohol-related crash, composing 68\% of all alcoholrelated traffic fatalities among persons aged <15 years; an additional 1854 (22\%) children who died were pedestrians, and 719 (8\%) were bicyclists (for 137 [2\%] fatalities, the status was unknown). From 1985 to 1996, the age-adjusted death rate for children who were motor-vehicle occupants in alcohol-involved crashes declined 26% (from 0.95 to 0.70); for those who were pedestrians, the rate declined 51% (from 0.39 to 0.19). For bicyclists aged $5-14$ years, the rate of involvement in alcohol-related motorvehicle crashes declined 62% (from 0.24 to 0.09).

From 1985 through 1996, a total of 3830 children aged <15 years were killed as passengers in a motor-vehicle crash involving a driver whose BAC was $\geq 0.10 \mathrm{~g} / \mathrm{dL}$. Of these, 2280 (60%) died while riding in the same vehicle with the drunk driver. Only 16\% (336 of 2094) of these children were restrained at the time of the crash (information on restraint use was unknown for 186 children) (Figure 2). For each age group, the percentage of children restrained varied inversely with their driver's BAC. Restraint use was lowest (11%) for children aged $10-14$ years whose drivers had BACs $\geq 0.10 \mathrm{~g} / \mathrm{dL}$.

Alcohol-Related Traffic Fatalities - Continued
FIGURE 1. Age-specific death rates* from alcohol-related motor-vehicle crashes among children aged <15 years, by year - United States, 1985-1996

*Per 100,000 population.

Reported by: Div of Unintentional Injury Prevention, National Center for Injury Prevention and Control, CDC.
Editorial Note: The findings in this report indicate that approximately one fourth of all motor-vehicle-related deaths among children aged <15 years involved alcohol and that in nearly two thirds of passenger deaths involving a legally drunk driver, the child was in the car driven by the legally drunk driver. The decline in the death rate for alcohol-involved crashes among children aged <15 years is consistent with a recent decline in the proportion of alcohol-involved deaths among drivers of all age groups (4). This decline coincides with passage of stricter laws about drinking and driving. In 33 states, driving with a BAC of $\geq 0.10 \mathrm{~g} / \mathrm{dL}$ is illegal, and in 15 states the limit has been lowered to $0.08 \mathrm{~g} / \mathrm{dL}$ (six states with a legal limit of $0.08 \mathrm{~g} / \mathrm{dL}$ have adopted this lower limit since 1993) (5).

The proportion of children killed in crashes while in the same car as a driver with a $B A C \geq 0.10 \mathrm{~g} / \mathrm{dL}$ is consistent with findings at a state level: during a 4 -year period in North Carolina, of 51 child passengers who died in alcohol-related crashes, 36 (70\%) were killed as passengers in vehicles in which their driver had been drinking and driving (6). The legislatures of 21 states have enacted child-endangerment laws that create a separate violation for persons who drive while legally intoxicated with a child in the vehicle (5); however, the effectiveness of these laws has not been evaluated.

FIGURE 2. Percentage of children restrained among those who died in motor-vehicle crashes, by child's age group and the blood alcohol concentration (BAC) of the driver of the vehicle in which the children were passengers — United States, 1985-1996*

*Does not include 1595 children for whom restraint use was unknown, 1325 children who were killed while in the driver's position of the vehicle, or 152 children killed for whom driver information was unknown.

Despite recent declines in rates for alcohol-related traffic deaths, U.S. drivers continue to drink and drive at a high rate. During 1993, approximately 123 million episodes of self-reported alcohol-impaired driving occurred in the United States (7). Further reduction in alcohol-involved motor-vehicle-related fatalities among children will require a variety of interventions designed to change drinking and driving behaviors of adults, including altering drivers' perceptions of risk to themselves and to others riding with them, increasing efforts to screen for alcoholism among persons convicted of driving while intoxicated, and changing public policy to deter adult drinking and driving, especially when adults are transporting young children. The proportion of children in this analysis who died while riding unrestrained in the same vehicle as the drunk driver underscores the need for continuing efforts to increase safety-belt and child safety-seat usage among all motor-vehicle occupants. Drivers with a BAC $\geq 0.10 \mathrm{~g} / \mathrm{dL}$ are less likely than drivers with lower BACs to wear safety belts (8), and this analysis indicates that their young passengers are at increased risk for riding unrestrained. Rigorous enforcement of primary safety-belt and child safety-seat laws by police, in addition to reducing drinking and driving, can protect children and other passengers from the hazards of alcohol-impaired driving.

Alcohol-Related Traffic Fatalities - Continued

References

1. CDC. Ten leading causes of death, 1995. Atlanta, Georgia: US Department of Health and Human Services, Public Health Service, CDC, 1997.
2. CDC. Alcohol-related traffic fatalities among youth and young adults—United States, 19821989. MMWR 1991;40:178-9,185-7.
3. Klein TM. A method for estimating posterior BAC distributions for persons involved in fatal traffic accidents: final report. Washington, DC: US Department of Transportation, National Highway Traffic Safety Administration, 1986; DOT report no. HS-807-094.
4. National Highway Traffic Safety Administration. Traffic safety facts, 1995. Washington, DC: US Department of Transportation, National Highway Traffic Safety Administration, National Center for Statistics and Analysis, Research, and Development 1996.
5. Mothers Against Drunk Driving. Rating the states, 1996. Irving, Texas: Mothers Against Drunk Driving, 1997.
6. Margolis LH, Kotch J, Lacey JH. Children in alcohol-related motor vehicle crashes. Pediatrics 1986;77:870-2.
7. Liu S, Siegel PZ, Brewer RD, Mokdad AH, Sleet DA, Serdula M. Prevalence of alcohol-impaired driving: results from a national self-reported survey of health behaviors. JAMA 1997;277:122-5.
8. Foss RD, Beirness DJ, Sprattler K. Seat belt use among drinking drivers in Minnesota. Am J Public Health 1994;84:1732-7.

Abortion Surveillance: Preliminary Analysis - United States, 1995

For 1995, CDC received data about legal induced abortions from the 50 states, New York City, and the District of Columbia. This report presents preliminary data for 1995; final abortion data for 1995 will be published during spring 1998.

In 1995, a total of 1,210,883 legal induced abortions were reported to CDC (Table 1), a decrease of 4.5% from the number reported for 1994 (1). The number of live births decreased by 1.5% over the same period. From 1994 to 1995, the number of reported abortions decreased in 40 of 52 reporting areas. From 1994 to 1995, the national abortion ratio (number of legal abortions per 1000 live births reported by all reporting areas) decreased from 321 to 311, respectively (Table 1, Figure 1), and the national abortion rate (number of legal abortions per 1000 women aged 15-44 years) decreased from 21 to 20, respectively. Consistent with previous years, approximately 92% of women who had legal abortions were residents of the state in which the procedure was performed.

Women who obtained legal abortions in 1995 were predominately white and unmarried. As in 1994, one fifth of women who obtained legal abortions in 1995 were adolescents (aged ≤ 19 years); 33% were aged $20-24$ years. Curettage (suction and sharp) remained the primary abortion procedure (99% of all procedures). As in previous years, more than half of legal abortions (54%) were performed during the first 8 weeks of gestation; specifically, 16% were at ≤ 6 weeks; 17% at 7 weeks; and 21% at 8 weeks. Approximately 88% of abortions were performed during the first 12 weeks of pregnancy.
Reported by: Statistics and Computer Resources Br, Div of Reproductive Health, National Center for Chronic Disease Prevention and Health Promotion, CDC.
Editorial Note: During 1980-1995, the annual number of legal induced abortions in the United States varied by $\leq 5 \%$ (Table 1). However, since 1990 (the year in which the number of abortions was highest), the number of reported abortions has steadily de-

TABLE 1. Reported number of legal induced abortions, abortion ratios,* abortion rates, ${ }^{\dagger}$ and characteristics of women who obtained legal induced abortions — United States, selected years, 1972-1995

Characteristic	1972	1976	1980	1985	1990	1991	1992	1993	1994	1995 ${ }^{\text {§ }}$
Reported no. legal abortions	586,760	988,267	1,297,606	1,328,570	1,429,577	1,388,937	1,359,145	1,330,414	1,267,415	1,210,883
Abortion ratio	180	312	359	354	345	339	335	334	321	311
Abortion rate	13	21	25	24	24	24	23	22	21	20
	Percentage distribution॥									
Residence										
In-state	56.2	90.0	92.6	92.4	91.8	91.6	92.0	91.4	91.5	91.7
Out-of-state	43.8	10.0	7.4	7.6	8.2	8.4	8.0	8.6	8.5	8.3
Age group (yrs)										
≤ 19	32.6	32.1	29.2	26.3	22.4	21.0	20.1	20.0	20.2	20.1
20-24	32.5	33.3	35.5	34.7	33.2	34.4	34.5	34.4	33.5	32.5
≥ 25	34.9	34.6	35.3	39.0	44.4	44.6	45.4	45.6	46.3	47.4
Race										
White	77.0	66.6	69.9	66.6	64.8	63.8	61.5	60.9	60.5	59.5
Black	23.0	33.4	30.1	29.8	31.8	32.5	33.9	34.9	34.7	35.0
Other**	-	-	-	3.5	3.4	3.7	4.6	4.2	4.8	5.5
Ethnicity										
Hispanic	-	-	-	-	9.8	13.5	15.2	14.7	14.5	15.4
Non-Hispanic	-	-	-	-	90.2	86.5	84.8	85.3	85.5	84.6
Marital status										
Married	29.7	24.6	23.1	19.3	21.7	21.4	20.8	20.4	19.9	20.3
Unmarried	70.3	75.4	76.9	80.7	78.3	78.6	79.2	79.6	80.1	79.7
No. live births ${ }^{\dagger \dagger}$										
0	49.4	47.7	58.4	56.3	49.2	47.8	45.9	46.3	46.2	45.2
1	18.2	20.7	19.4	21.6	24.4	25.3	25.9	26.0	25.9	26.5
2	13.3	15.4	13.7	14.5	16.9	17.4	18.0	17.8	17.8	18.0
3	8.7	8.3	5.3	5.1	6.1	6.4	6.7	6.6	6.7	6.8
≥ 4	10.4	7.9	3.2	2.5	3.4	3.4	3.5	3.3	3.4	3.5

Type of procedure										
Curettage	88.6	92.8	95.5	97.5	98.8	98.9	98.9	99.0	99.1	98.9
Suction	65.2	82.6	89.8	94.6	96.0	97.3	97.0	96.4	96.5	96.6
Sharp	23.4	10.2	5.7	2.9	2.8	1.6	1.9	2.6	2.6	2.3
Intrauterine										
instillation	10.4	6.0	3.1	1.7	0.8	0.7	0.7	0.6	0.5	0.5
Other ${ }^{\text {§ }}$	1.0	1.2	1.4	0.8	0.4	0.4	0.4	0.4	0.4	0.6
Weeks' gestation										
≤ 8	34.0	47.0	51.7	50.3	51.6	52.3	52.1	52.3	53.7	54.0
≤ 6	-	-	-	-	-	-	14.3 Tा	14.7***	$15.7{ }^{\dagger \dagger \dagger}$	$15.7{ }^{\dagger t \dagger}$
7	-	-	-	-	-	-	15.6TIT	16.2***	$16.5^{\dagger \dagger \dagger}$	$17.1{ }^{\dagger t \dagger}$
8	-	-	-	-	-	-	22.2 ¢ा	21.6***	$21.6{ }^{\dagger \dagger \dagger}$	$21.2{ }^{\dagger \dagger}$
9-10	30.7	28.1	26.2	26.6	25.3	25.1	24.2	24.4	23.5	23.1
11-12	17.5	14.4	12.2	12.5	11.7	11.5	12.0	11.6	10.9	10.9
13-15	8.4	4.5	5.1	5.9	6.4	6.1	6.0	6.3	6.3	6.3
16-20	8.2	5.1	3.9	3.9	4.0	3.9	4.2	4.1	4.3	4.3
≥ 21	1.2	0.9	0.9	0.8	1.0	1.1	1.5	1.3	1.3	1.4

* Number of legal induced abortions per 1000 live births.
\dagger Number of legal induced abortions per 1000 women aged 15-44 years.
${ }^{\S}$ Preliminary data. The number of areas reporting a given characteristic varied. For 1995, the number of areas reporting residence was 43; age, 44; race, 36; ethnicity, 23; marital status, 33; number of live births, 37; type of procedure, 40; and weeks of gestation, 40.

I Percentage distributions are based on known values in data from all areas reporting a given characteristic, except where the proportion of unknown values exceeded 15%.
** Reported as "other" race.
${ }^{\dagger \dagger}$ For years 1972 and 1976, data indicate number of living children.
§§ Includes hysterotomy and hysterectomy.
ITI Data are for 36 of 39 areas reporting weeks of gestation.
*** Data are for 38 of 41 areas reporting weeks of gestation.
${ }^{\dagger \dagger \dagger}$ Data are for 38 of 40 areas reporting weeks of gestation.

Abortion Surveillance - Continued

FIGURE 1. Fertility rate* and abortion ratio ${ }^{\dagger}$ and rate ${ }^{\S}$, by year - United States, 1972-1995

* Number of live births per 1000 women aged 15-44 years.
${ }^{\dagger}$ Number of legal induced abortions per 1000 live births.
${ }^{\S}$ Number of legal induced abortions per 1000 women aged 15-44 years.
creased. In 1995, 77\% of reporting areas reported fewer abortions than in 1994. During 1972-1980, the national abortion rate increased each year; during 1981-1993, the rate remained stable, fluctuating between 22 and 24 per 1000 women of reproductive age (i.e., aged 15-44 years) (Figure 1). The 1995 rate of 20 was the lowest rate recorded since 1975 (2).

In 1995, the national ratio of abortions to live births (311 abortions per 1000 live births) was lower than for any year since 1976 (Figure 1) (3). The denominator of this ratio (the number of live births) peaked in 1990 and has declined each subsequent year; although the numerator of this ratio (the number of abortions) also peaked in 1990, the percentage decline from 1994 to 1995 in the annual number of abortions exceeded the percentage decline in the annual number of births (4.5% compared with 1.5%, respectively). Factors potentially associated with the decrease in the proportion of pregnancies that ended in an abortion include reduced access to abortion services, attitudinal changes concerning the decision to have an abortion or to carry a pregnancy to term, and a reduction in the number of unintended pregnancies (4-6).

Although the number of women of reproductive age in the United States has increased by 13% since 1980 , the proportion who are older (i.e., in later, less fertile reproductive years) has increased (7). For example, from 1980 to 1995, the percentage of women of reproductive age who were aged <30 years (the age group having high-

Abortion Surveillance - Continued

est fertility) declined from 58% to 46%, respectively (8), while women aged $35-$ 44 years (the age group having lowest fertility) accounted for 25% and 36% of repro-ductive-aged women, respectively. The final report for 1995 will assess the impact of changes in the age distribution of reproductive-aged women on the long-term trend in the abortion rate and ratio.

Many states emphasize prevention of unintended pregnancy, particularly among teenagers. During 1995, the total number of legal induced abortions was available for all 52 reporting areas. However, approximately 36% of abortions were reported from states without centralized reporting of abortions (four states) or from states whose state health departments did not collect, and therefore could not provide, information about characteristics (e.g., age or race) of women obtaining legal abortions (four states). To assist efforts to prevent unintended pregnancy, each state needs an accurate assessment of abortion on an ongoing basis (including the number and characteristics of women obtaining legal abortions). Since 1992, most reporting areas have reported abortions by gestational age in weeks of gestation for abortions performed at ≤ 8 weeks. As new medical methods are used for terminating pregnancies primarily at ≤ 8 weeks of gestation, these data will continue to assist in monitoring trends in legal abortions (9,10).

Additional statistical and epidemiologic information about legal induced abortions is available from CDC's automated Reproductive Health Information line, telephone (888) 232-2306, which provides information by fax, by voice recordings, or through the mail.

References

1. CDC. Abortion surveillance: preliminary data—United States, 1994. MMWR 1997;45:1123-7.
2. CDC. Abortion surveillance 1975. Atlanta, Georgia: US Department of Health, Education, and Welfare, Public Health Service, 1977.
3. CDC. Abortion surveillance 1976. Atlanta, Georgia: US Department of Health, Education, and Welfare, Public Health Service, 1978.
4. Henshaw SK. The accessibility of abortion services in the United States. Fam Plann Perspect 1991;23:246-52,263.
5. Henshaw SK, Van Vort J. Abortion services in the United States, 1991 and 1992. Fam Plann Perspect 1994;26:100-6,112.
6. Abma J, Chandra A, Mosher W, Peterson L, Piccinino L. Fertility, family planning, and women's health: new data from the 1995 National Survey of Family Growth. Hyattsville, Maryland: US Department of Health and Human Services, Public Health Service, CDC, 1997:23; DHHS publication no. (PHS)97-1995. (Vital and health statistics; series 23, no. 19).
7. Ventura SJ, Martin JA, Curtin SC, Mathews TJ. Report of final natality statistics, 1995. Hyattsville, Maryland: US Department of Health and Human Services, CDC, National Center for Health Statistics, 1997. (Monthly vital statistics report; vol 45, no. 11, suppl).
8. Deardorff KE, Montgomery P, Hollmann FW. U.S. population estimates by age, sex, race, and Hispanic origin: 1990 to 1995. Washington, DC: US Department of Commerce, Economics and Statistics Administration, Bureau of the Census, 1996; publication no. PPL-41.
9. Peyron R, Aubeny E, Targosz V, et al. Early termination of pregnancy with mifepristone (RU 486) and the orally active prostaglandin misoprostol. N Engl J Med 1993;328:1509-13.
10. Creinin MD, Vittinghoff E, Galbraith S, Klaisle C. A randomized trial comparing misoprostol three and seven days after methotrexate for early abortion. Am J Obstet Gynecol 1995;173:1578-84.

Use of Clinical Preventive Services by Medicare Beneficiaries Aged ≥ 65 Years - United States, 1995

Delivery of clinical preventive services to older adults can reduce premature morbidity and mortality while preserving function and enhancing overall quality of life $(1,2)$. Until recently, the use of such services has been low among older adults because Medicare coverage has not been extended to many preventive services (3). Medicare coverage now includes four clinical preventive services: a single lifetime pneumococcal polysaccharide vaccination (vaccine plus any required revaccination and administration) (since 1981); annual influenza vaccination (vaccine and administration) (since 1993); and for women, biennial mammography screening (since 1991) and Papanicolaou smear screening every 36 months (since 1990) (4,5). To assess current state-specific levels of use of these services among Medicare beneficiaries, CDC and the Health Care Financing Administration (HCFA) analyzed data from the 1995 Behavioral Risk Factor Surveillance System (BRFSS). This report summarizes the findings of this analysis, which indicate that, despite Medicare coverage of these preventive services, many U.S. adults aged ≥ 65 years did not receive such services in 1995, and state-specific use of these services varied substantially.

The BRFSS is an ongoing, state-based, random-digit-dialed telephone survey of U.S. civilian, noninstitutionalized adults aged ≥ 18 years. In 1995, all 50 states participated in the survey (6). All persons responding to the BRFSS questionnaire were asked 1) "Do you have any kind of health-care coverage, including health insurance, prepaid plans such as HMOs [health-maintenance organizations], or government plans such as Medicare?" and 2) what specific preventive health services they had received and the duration since they had received the service(s). Of the 113,934 survey participants, 22,849 were aged ≥ 65 years. Because the 1995 survey did not ask specifically whether the respondent had Medicare insurance, a "yes" response to the health insurance status question was used as a proxy for Medicare coverage. A total of $22,500(98.5 \%)$ respondents aged ≥ 65 years indicated having such coverage. Male survey respondents were excluded from estimates of prevalences of mammography and Pap smear screenings. Female respondents from California also were excluded from these estimates because of the different wording of the survey questions in that state. Statistical Analysis Software (SAS) was used to calculate the prevalence estimates, and Software for Survey Data Analysis (SUDAAN) was used to calculate 95% confidence intervals (Cls). Although differences in state-specific prevalence estimates may reflect, in part, disparate age distributions, the sizes of the samples did not permit age adjustment of prevalence rates.

In 1995, state-specific estimates of the percentage of persons aged ≥ 65 years who had received influenza vaccinations during the 12 months preceding the survey ranged from 46.2% ($95 \% \mathrm{Cl}=40.3 \%-52.1 \%$) (Alabama) to 70.3% ($95 \% \mathrm{Cl}=65.4 \%-75.2 \%$) (Utah) (median: 60.6\%) (Table 1). The prevalences for most southeastern states were in the lowest quartile ($46.2 \%-56.1 \%$) and for most western states were in the highest quartile (64.1\%-70.3\%) (Figure 1).

Estimates of the percentage of persons aged ≥ 65 years who had ever received a pneumococcal vaccination ranged from 13.1% ($95 \% \mathrm{Cl}=8.0 \%-18.2 \%$) (New Jersey) to 49.3\% ($95 \% \mathrm{Cl}=43.0 \%-55.6 \%$) (Arizona) (median: 38.5\%). Prevalences were higher in western states.

The percentage of women aged ≥ 65 years who had received a mammogram during the 2 years preceding the survey ranged from 52.7% ($95 \% \mathrm{Cl}=44.3 \%-61.1 \%$) (New Jersey) to 80.4% ($95 \% \mathrm{Cl}=68.8 \%-92.0 \%$) (Alaska) (median: 65.0\%), and prevalences did not vary by region. Percentages of women aged ≥ 65 years who had obtained Pap smears during the 3 years preceding the survey ranged from 52.2% ($95 \% \mathrm{Cl}=44.9 \%-$ 59.5\%) (Kentucky) to 88.5% ($95 \% \mathrm{Cl}=83.4 \%-93.6 \%$) (Arizona) (median: 70.0\%); a substantial number of states in the Midwest ranked in the second lowest quartile (range: 63.7\%-67.3\%) (Figure 2).

Reported by: Behavioral Risk Factor Surveillance System coordinators. L Rhodes, MPH, Klemm Analysis Group; D Arday, MD, S Arday, MHS, Office of Clinical Standards and Quality, Health Care Financing Administration. Health Care and Aging Studies Br and Behavioral Surveillance Br, Div of Adult and Community Health, National Center for Chronic Disease Prevention and Health Promotion, CDC.
Editorial Note: This report documents substantial variation in the state-specific prevalences of four preventive services (pneumococcal polysaccharide vaccination, influenza vaccination, mammography screening, and Pap smear screening) used recently by Medicare-eligible adults. Although all four services are covered by Medicare and endorsed by many organizations and agencies (7), many states have not met the national health objectives for 2000 for use of these services (60% coverage with influenza and pneumonia vaccines [objective 20.1] and use of Pap smears by 70% of women aged ≥ 70 years with an intact cervix [objective 16.12]*) (3). These findings also indicate that health-care coverage alone does not ensure use of preventive services, even though previous national studies have documented that uninsured persons were less likely to receive preventive health services (8). The use of a state-specific survey such as BRFSS enables individual states and HCFA's peer review organizations to estimate prevalences and tailor intervention strategies.

The findings in this report are subject to at least four limitations. First, because BRFSS includes only households with a telephone, the findings may underestimate prevalences among groups with lower socioeconomic status, resulting in overestimation of the prevalences of use of preventive services. Second, because limitations in the sample sizes precluded age-adjustment by state, disparities in state-specific age distributions may account for some of the variation in rates of service delivery. Third, self-reported data are subject to recall bias, especially telescoping (i.e., the tendency to recall an event as having occurred later or earlier than it actually did). Women often report having had a mammogram or Pap smear in the recommended time frame when the actual interim since their last screening has been longer, resulting in overestimates of state-based prevalences. Finally, although age and health insurance status were used as a proxy for Medicare coverage of preventive services, other factors that may have affected out-of-pocket costs (e.g., "medi-gap" programs that supplement Medicare, Medicaid, and employer health insurance programs) were unaccounted for in the analysis (9). For example, although the Supplementary Medical Insurance Program (i.e., Medicare Part B) reimburses all the services included in this report, enrollment is voluntary and requires payment of a monthly premium; persons not enrolled could incur substantial out-of-pocket expenses after receipt of services. In $1995,5 \%-6 \%$ of the population aged ≥ 65 years was not covered by Medicare Part B.

The likelihood of use of clinical preventive services is decreased among persons without a usual source of care and among those in lower income and education

[^0]TABLE 1. Estimated prevalence of use of four clinical preventive services by Medicare beneficiaries* aged ≥ 65 years, by service and state - United States, Behavioral Risk Factor Surveillance System (BRFSS), 1995

New York	56.6	$(51.3 \%-61.9 \%)$	26.9	$(22.0 \%-31.8 \%)$	64.3	$(57.8 \%-70.8 \%)$	64.2	$(56.8 \%-71.6 \%)$
North Carolina	52.9	$(49.0 \%-56.8 \%)$	31.7	$(28.2 \%-35.2 \%)$	64.2	$(59.7 \%-68.7 \%)$	73.2	$(67.7 \%-78.7 \%)$
North Dakota	57.4	$(52.5 \%-62.3 \%)$	33.3	$(28.4 \%-38.2 \%)$	62.2	$(56.3 \%-68.1 \%)$	66.2	$(58.6 \%-73.8 \%)$
Ohio	62.7	$(56.0 \%-69.4 \%)$	40.4	$(33.3 \%-47.5 \%)$	64.4	$(56.8 \%-72.0 \%)$	66.4	$(56.2 \%-76.6 \%)$
Oklahoma	61.0	$(56.3 \%-65.7 \%)$	36.9	$(32.2 \%-41.6 \%)$	58.3	$(52.2 \%-64.4 \%)$	71.4	$(62.0 \%-80.8 \%)$
Oregon	67.3	$(63.2 \%-71.4 \%)$	46.1	$(41.6 \%-50.6 \%)$	76.8	$(72.1 \%-81.5 \%)$	80.7	$(74.4 \%-87.0 \%)$
Pennsylvania	58.7	$(54.2 \%-63.2 \%)$	38.7	$(33.8 \%-43.6 \%)$	59.3	$(54.2 \%-64.4 \%)$	61.7	$(55.0 \%-68.4 \%)$
Rhode Island	66.8	$(61.3 \%-72.3 \%)$	31.0	$(25.5 \%-36.5 \%)$	69.8	$(63.1 \%-76.5 \%)$	59.3	$(50.3 \%-68.3 \%)$
South Carolina	51.7	$(46.0 \%-57.4 \%)$	26.8	$(21.9 \%-31.7 \%)$	70.1	$(63.2 \%-77.0 \%)$	77.6	$(68.6 \%-86.6 \%)$
South Dakota	60.1	$(55.2 \%-65.0 \%)$	31.2	$(26.3 \%-36.1 \%)$	59.7	$(53.2 \%-66.2 \%)$	69.1	$(61.3 \%-76.9 \%)$
Tennessee	63.6	$(58.1 \%-69.1 \%)$	29.5	$(24.6 \%-34.4 \%)$	64.7	$(58.4 \%-71.0 \%)$	66.9	$(58.7 \%-75.1 \%)$
Texas	57.3	$(50.4 \%-64.2 \%)$	45.6	$(38.3 \%-52.9 \%)$	62.9	$(55.3 \%-70.5 \%)$	64.9	$(54.1 \%-75.7 \%)$
Utah	70.3	$(65.4 \%-75.2 \%)$	42.9	$(37.4 \%-48.4 \%)$	66.6	$(60.7 \%-72.5 \%)$	72.0	$(64.2 \%-79.8 \%)$
Vermont	64.0	$(59.1 \%-68.9 \%)$	36.0	$(31.1 \%-40.9 \%)$	65.7	$(59.6 \%-71.8 \%)$	77.5	$(70.8 \%-84.2 \%)$
Virginia	53.2	$(46.3 \%-60.1 \%)$	40.2	$(32.9 \%-47.5 \%)$	70.4	$(62.2 \%-78.6 \%)$	79.5	$(70.5 \%-88.5 \%)$
Washington	67.5	$(63.0 \%-72.0 \%)$	46.7	$(41.8 \%-51.6 \%)$	74.2	$(69.1 \%-79.3 \%)$	77.0	$(69.6 \%-84.4 \%)$
West Virginia	53.6	$(49.3 \%-57.9 \%)$	37.1	$(32.6 \%-41.6 \%)$	61.0	$(55.9 \%-66.1 \%)$	65.7	$(59.2 \%-72.2 \%)$
Wisconsin	56.7	$(50.8 \%-62.6 \%)$	35.8	$(30.1 \%-41.5 \%)$	59.2	$(51.8 \%-66.6 \%)$	71.7	$(63.1 \%-80.3 \%)$
Wyoming	66.5	$(61.4 \%-71.6 \%)$	44.4	$(39.1 \%-49.7 \%)$	59.6	$(52.9 \%-66.3 \%)$	63.5	$(54.7 \%-72.3 \%)$

[^1]FIGURE 1. Prevalence of receipt of influenza vaccination during the 12 months preceding the survey among Medicare beneficiaries* aged ≥ 65 years - United States, Behavioral Risk Factor Surveillance System (BRFSS), 1995 ${ }^{\dagger}$

*All persons responding to the BRFSS questionnaire were asked "Do you have any kind of health-care coverage, including health insurance, prepaid plans such as HMOs [health-maintenance organizations], or government plans such as Medicare?" A "yes" response was used as a proxy for Medicare coverage.
${ }^{\dagger}$ Median: 60.9\%.
groups (7,8). Other barriers to receipt of such services include 1) provider knowledge and attitudes (lack of training or disagreement with guidelines); 2) patient knowledge and attitudes (anxiety, discomfort, or apathy); and 3) system factors (lack of provider staff or reminder systems). Elimination of barriers will require changes in policy, legislation, and the development of outreach programs of clinical preventive services targeted to older adults. Although provider-directed strategies emphasizing continuing medical education has had limited success in changing professional practice patterns, some office-based interventions (e.g., prompting, monitoring, and providing performance feedback) have modestly increased delivery of preventive services (10). Additional efforts should assess the effectiveness of patient-directed interventions that specifically address the needs and attitudes of older adults. The delivery of preventive services to older adults also will require broad-based interventions implemented simultaneously at several levels. These interventions should include changes in the structure of the delivery of preventive services in health care and increased consensus regarding prevention guidelines.

References

1. Goldberg TH, Chavin SI. Preventive medicine and screening in older adults. J Am Geriatr Soc 1997;45:344-54.

Use of Clinical Preventive Services - Continued
FIGURE 2. Prevalence of receipt of Papanicolaou smears during the 3 years preceding the survey among female Medicare beneficiaries* aged ≥ 65 years, by state - United States, Behavioral Risk Factor Surveillance System (BRFSS), 1995^{\dagger}

*All persons responding to the BRFSS questionnaire were asked "Do you have any kind of health-care coverage, including health insurance, prepaid plans such as HMOs [health-maintenance organizations], or government plans such as Medicare?" A "yes" response was used as a proxy for Medicare coverage.
${ }^{\dagger}$ Median: 70.0\%.
${ }^{\text {§ }}$ Female respondents from California were excluded from these estimates because of the different wording of the survey questions in that state.
2. CDC. Pneumococcal and influenza vaccination levels among adults aged ≥ 65 years-United States, 1995. MMWR 1997;46:913-9.
3. Public Health Service. Healthy people 2000: midcourse review and 1995 revisions. Washington, DC: US Department of Health and Human Services, Public Health Service, 1995.
4. Chin JS, Ellerbeck EE, Jencks SF. Improving preventive health care in Medicare's health care quality improvement program. Am J Prev Med 1995;11:397-401.
5. Fahs MC, Mandelblatt J, Schechter C, Muller C. Cost effectiveness of cervical cancer screening for the elderly. Ann Intern Med 1992;117:520-7.
6. Frazier EL, Franks AL, Sanderson LM. Behavioral risk factor data. In: CDC. Using chronic disease data: a handbook for public health practitioners. Atlanta, Georgia: US Department of Health and Human Services, Public Health Service, CDC, 1992:4-17.
7. US Preventive Services Task Force. Guide to clinical preventive services. 2nd ed. Baltimore, Maryland: Williams \& Wilkins, 1996.
8. Makuc DM, Freid VM, Parsons PE. Health insurance and cancer screening among women. Hyattsville, Maryland: US Department of Health and Human Services, Public Health Service, CDC, National Center for Health Statistics, 1994. (Advance data no. 254).
9. Blustein J. Medicare coverage, supplemental insurance, and the use of mammography by older women. N Engl J Med 1995;332:1138-43.
10. Davis DA, Thomson MA, Oxman AD, Haynes RB. Changing physician performance: a systematic review of the effect of continuing medical education strategies. JAMA 1995;274:700-5.

Efforts to Quit Smoking Among Persons With a History of Alcohol Problems — lowa, Kansas, and Nebraska, 1995-1996

In 1991, approximately 13.8 million adults in the United States met diagnostic criteria for alcohol abuse, alcohol dependence, or both (1). In addition, at least 80% of persons in this group were likely to be daily tobacco smokers and, therefore, at increased risk for oral and pharyngeal cancers (2,3). In Minnesota, among adult smokers with a history of alcohol abuse during 1972-1983, the number of tobacco-related deaths was higher than the number of alcohol-related deaths (4). To assess rates of smoking cessation among adults with a history of alcohol problems, the University of Nebraska Medical Center conducted an intervention study with 1 year of follow-up during 1995-1996 in 12 residential alcohol-treatment centers in lowa, Kansas, and Ne braska. This report summarizes the findings, which suggest that a substantial proportion of adults recently treated for alcoholism attempted to quit smoking, even though actual quit rates were low.

All participants ($n=575$) were daily tobacco smokers who voluntarily enrolled in the study while undergoing residential treatment for alcohol abuse. Of these 575 persons, $288(50 \%)$ were receiving care at six alcohol-treatment centers testing a brief smokingcessation intervention for recovering alcoholics. The intervention consisted of four 10 -minute individually tailored counseling discussions about quitting smoking (3,5). Nicotine-replacement products were not provided. The remaining 287 participants received alcohol treatment at six other centers but not the additional counseling discussions about quitting smoking.

Characteristics of participants in the centers that provided smoking-cessation counseling and those that provided only usual care were similar in age, sex, race/ethnicity, and drug-abuse history. Overall, 67% of the participants were male, and the overall mean age was 33 years. Approximately 33% of the participants self-identified as racial minorities, including 121 American Indians/Alaskan Natives who were clients at the two centers that served only persons who were American Indian/Alaskan Native. During the 30 days preceding admission for treatment, participants reported drinking a mean of 12 alcoholic drinks per day. The average number of days in residential treatment before discharge to outpatient care was 34 . The mean number of cigarettes smoked per day was 20 (range: 1-80 cigarettes).

At 1, 6, and 12 months after discharge from residential treatment, participants completed a mail survey about their recent drug use that included 10 questions about tobacco. The survey asked about attempts to quit smoking since the previous assessment and the number of days of nonsmoking; 1 day was defined as "at least 24 hours." Saliva samples were obtained from and analyzed for cotinine for the 70% of persons who reported they no longer smoked. For a randomly selected subset of 176 (33%) of all respondents, a friend or relative named by the participant at study enrollment was interviewed by telephone to confirm questionnaire data. At least one follow-up survey was completed by most (540 [94\%]) participants; the 12-month questionnaire was completed by 448 (78%). In this analysis, a successful quitter was defined as a person who reported at the 12-month follow-up no longer smoking and not having smoked a cigarette for at least the preceding 7 days.

Of the participants who completed the 12-month follow-up, 36 (8%) reported being successful quitters; of these persons, 29 (80%) reported not having smoked a cigarette

Efforts to Quit Smoking - Continued

for at least the preceding 30 days. Analysis of cotinine scores of successful quitters indicated that most (88%) saliva samples had nondetectable cotinine levels; 12% had been obtained from participants who relapsed to smoking after completing their questionnaire or who had detectable levels below the cut-point, suggesting recent tobacco use. Data from friends and relatives confirmed 165 (94%) of 176 participant drug-use reports. Quit rates for participants from the centers providing the smoking-cessation counseling were similar to those of participants from centers providing usual care (9% compared with 7%, respectively; $p>0.05$). Sex-specific quit rates were 9% for males and 6% for females ($p>0.05$). Rates for other subgroups were not meaningful because of small sample sizes.

When quit attempts were analyzed without consideration of tobacco smoking status at the 12-month assessment, the rates were higher. For these analyses, unsuccessful quitters (i.e., persons who had quit smoking but had relapsed back to tobacco smoking by follow-up) were combined with successful quitters. A quit attempt of ≥ 24 hours was reported by 45% of the study sample; 25% of all participants reported quitting for ≥ 7 days sometime during the year of follow-up (Table 1). Quit attempt rates for participants from the smoking-cessation and usual-care treatment centers were similar ($p>0.05$).

Race/ethnicity was the only sociodemographic variable significantly associated with attempts to quit smoking ($p<0.05$). Based on logistic regression models that adjusted for age, sex, education, and the provision of smoking-cessation counseling, American Indian/Alaskan Native participants were more likely than non-Hispanic white participants to report having quit smoking for ≥ 24 hours and having quit for ≥ 7 days (Table 2).

Of the participants who reported having quit smoking for ≥ 7 days by the 12-month follow-up, 73% reported having relapsed at some time during the preceding year. Relapse rates were similar by race/ethnicity, age, sex, education, and provision of smok-ing-cessation counseling during alcohol treatment ($p>0.05$). For example, relapse rates for non-Hispanic whites, American Indians/Alaskan Natives, and participants of other racial/ethnic groups were $75 \%, 68 \%$, and 75%, respectively.
Reported by: JK Bobo, PhD, Univ of Nebraska Medical Center, Omaha. Div of Cancer Prevention and Control and Office on Smoking and Health, National Center for Chronic Disease Prevention and Health Promotion, CDC.
Editorial Note: The findings in this report suggest that, although a substantial proportion of clients receiving treatment for alcohol abuse also were willing to attempt smoking cessation, actual quit rates were low. Failure of the tobacco intervention to increase quit rates significantly and high relapse rates among those who reported quitting for ≥ 7 days probably reflect the brevity of the smoking-cessation intervention, the addictive nature of nicotine, and the concurrent challenges of the other lifestyle changes required for successful recovery from alcohol abuse (6,7).

Despite restrictions on the sample population in this trial that limit generalization of the findings, the quit rates in this study are similar to those reported previously for a nationwide sample of persons aged ≥ 18 years (8). In that survey, 42% of daily smokers reported having abstained from cigarettes for at least 1 day during the preceding year, and 86% subsequently resumed smoking (8); only 6% of those who were daily smokers 1 year before the interview quit smoking and maintained abstinence for at least 1 month. In this study, the finding that attempts to quit smoking were more common

TABLE 1. Prevalence estimates of recovering alcoholics who reported tobacco smoking quit attempts of $\geq \mathbf{2 4}$ hours or $\geq \mathbf{7}$ days during 1 year of follow-up after discharge from a residential alcohol-treatment center, by selected characteristics - lowa, Kansas, and Nebraska, 1995-1996

	\% Quitting for $\geq \mathbf{2 4}$ hours						\% Quitting for ≥ 7 days					
	Received intervention$(\mathrm{n}=288)$		Did not receive intervention ($\mathrm{n}=287$)		Overall$(\mathrm{n}=575)$		Received intervention ($\mathrm{n}=288$)		Did not receive intervention ($\mathrm{n}=287$)		Overall$(n=575)$	
	\%	(95\% CI*)	\%	(95\% CI)								
Age group (yrs)												
18-24	55.6	(42.3\%-68.9\%)	50.9	(37.9\%-63.9\%)	53.2	(43.9\%-62.5\%)	35.2	(22.5\%-47.9\%)	33.3	(15.5\%-51.1\%)	34.2	(25.4\%-43.0\%)
25-44	44.0	(37.2\%-50.8\%)	42.1	(35.3\%-48.9\%)	43.0	(38.2\%-47.8\%)	21.3	(15.7\%-26.9\%)	22.8	(17.0\%-28.6\%)	22.0	(17.9\%-26.0\%)
≥ 45	46.2	(27.1\%-65.4\%)	50.0	(31.5\%-68.5\%)	48.1	(34.8\%-61.4\%)	26.9	(9.8\%-43.9\%)	32.1	(14.8\%-49.4\%)	29.6	(17.4\%-41.8\%)
Sex												
Male	45.0	(38.1\%-51.9\%)	41.8	(34.7\%-48.9\%)	43.5	(38.5\%-48.4\%)	25.0	(18.9\%-31.0\%)	25.0	(18.6\%-35.8\%)	25.0	(20.7\%-29.3\%)
Female	48.9	(38.4\%-59.3\%)	49.5	(39.8\%-59.2\%)	49.2	(42.1\%-56.3\%)	22.7	(13.9\%-31.4\%)	27.2	(18.6\%-35.8\%)	25.1	(18.9\%-31.2\%)
Education (yrs)												
<12	42.4	(29.8\%-55.0\%)	52.3	(40.1\%-64.4\%)	47.6	(38.8\%-56.4\%)	22.0	(11.4\%-32.6\%)	36.9	(25.2\%-48.6\%)	29.8	(21.7\%-37.9\%)
12	43.0	(34.6\%-51.3\%)	40.7	(32.4\%-48.9\%)	41.9	(36.0\%-47.8\%)	20.7	(13.9\%-27.5\%)	20.0	(13.2\%-26.7\%)	20.4	(15.6\%-25.2\%)
>12	53.2	(43.1\%-63.3\%)	45.3	(34.8\%-55.8\%)	49.4	(42.1\%-56.7\%)	30.9	(21.6\%-40.2\%)	26.7	(17.3\%-36.0\%)	28.9	(22.2\%-35.5\%)
Race/Ethnicity ${ }^{\dagger}$												
White, non-Hispanic	41.1	(34.1\%-48.0\%)	38.2	(31.3\%-45.1\%)	39.7	(34.8\%-44.6\%)	20.3	(14.6\%-25.9\%)	22.0	(16.1\%-27.9\%)	21.2	(17.0\%-25.2\%)
American Indian/ Alaskan Native	65.6	(53.7\%-77.5\%)	66.7	(54.8\%-78.6\%)	66.1	(57.7\%-74.5\%)	42.6	(30.2\%-55.0\%)	40.0	(27.6\%-52.3\%)	41.3	(32.5\%-50.1\%)
Other	40.0	(23.8\%-56.2\%)	41.7	(25.6\%-57.8\%)	40.8	(29.3\%-52.2\%)	14.3	(2.7\%-25.9\%)	22.2	(8.6\%-35.8\%)	18.3	(9.3\%-27.3\%)
Total	46.2	(40.4\%-51.9\%)	44.6	(38.8\%-50.4\%)	45.4	(41.3\%-49.5\%)	24.3	(19.3\%-29.2\%)	25.8	(20.7\%-30.9\%)	25.0	(21.5\%-28.5\%)

[^2]Efforts to Quit Smoking - Continued
TABLE 2. Adjusted odds ratios (AORs)* for tobacco smoking quit attempts of $\geq \mathbf{2 4}$ hours and ≥ 7 days among recovering alcoholics during 1 year of follow-up after discharge from a residential alcohol-treatment center - lowa, Kansas, and Nebraska, 1995-1996 ${ }^{\dagger}$

Characteristic	Quit for ≥ 24 hours		Quit for ≥ 7 days	
	AOR	(95\% CI ${ }^{\text {§ }}$)	AOR	(95\% CI)
Age group (yrs)				
18-24	1.0	Referent	1.0	Referent
25-44	0.8	(0.5-1.2)	0.6	(0.4-1.0)
≥ 45	1.0	(0.5-1.9)	0.9	(0.4-1.9)
Sex				
Male	1.0	Referent	1.0	Referent
Female	1.1	(0.7-1.6)	0.8	(0.5-1.3)
Education (yrs)				
<12	1.0	Referent	1.0	Referent
12	0.9	(0.6-1.5)	0.7	(0.4-1.2)
>12	1.4	(0.9-2.3)	1.3	(0.7-2.2)
Race/Ethnicity				
White, non-Hispanic	1.0	Referent	1.0	Referent
American Indian/				
Alaskan Native	3.0	(1.9-4.7)	2.7	(1.7-4.3)
Other ${ }^{\text {I }}$	1.1	(0.7-1.9)	0.9	(0.5-1.8)

*The odds ratios presented for each sociodemographic variable are adjusted for the other sociodemographic variables in the table and for receipt of the smoking cessation intervention.
${ }^{\dagger} \mathrm{n}=575$.
${ }^{\S}$ Confidence interval.
"Four respondents indicated Hispanic ethnicity. These persons were included in the "other" category.
among American Indian/Alaskan Native participants than among non-Hispanic whites may reflect the effect of race as a marker for other sociodemographic characteristics previously associated with tobacco and smoking cessation (e.g., income, education, occupation, and community traditions) (9).

In the United States and other countries, recovering alcoholics have not been encouraged to quit smoking as consistently as have smokers in the total population because of concerns that the stress of nicotine withdrawal might provoke a relapse to alcohol abuse (10). However, this position has not been substantiated by rigorous trials or investigation (10). In the study described in this report, recovering alcoholics who were encouraged to quit smoking were less likely to relapse to drinking during the 1 -year follow-up period (10). Public health departments can facilitate smokingcessation efforts among recovering alcoholics by encouraging community chemicaldependency treatment programs to routinely screen for and treat tobacco use. The findings in this report suggest that more intensive interventions, similar to those employed for treatment of alcohol problems, may be needed to markedly increase tobacco smoking-cessation rates among such groups.

References

1. Grant BF, Harford TC, Dawson DA, Chou P, Dufour M, Pickering R. Prevalence of DSM-IV alcohol abuse and dependence. Alcohol Health Res World 1994;18:243-8.

Efforts to Quit Smoking - Continued

2. Blot WJ, McLaughlin JK, Devesa SS, Fraumeni JF Jr. Cancers of the oral cavity and pharynx. In: Schottenfeld D, Fraumeni JF Jr, eds. Cancer epidemiology and prevention. New York: Oxford University Press, 1996:666-80.
3. Leed-Kelly A, Russell KS, Bobo JK, Mcllvain H. Feasibility of smoking cessation counseling by phone with alcohol treatment center graduates. J Subs Abuse Tx 1996;13:203-10.
4. Hurt RD, Offord KP, Croghan IT, et al. Mortality following inpatient addictions treatment: role of tobacco use in a community-based cohort. JAMA 1996;275:1097-103.
5. Mcllvain HE, Bobo JK, Leed-Kelly A, Sitorius MA. Practical steps to smoking cessation for recovering alcoholics. Am Fam Physician (in press).
6. Jarvik ME, Schneider NG. Nicotine. In: Lowinson JH, Ruis P, Millman RB, Langrod JG, eds. Substance abuse: a comprehensive textbook. 2nd ed. Baltimore: Williams \& Wilkins, 1992:33456.
7. Institute of Medicine. Broadening the base of treatment for alcohol problems. Washington, DC: National Academy Press, 1990.
8. CDC. Smoking cessation during previous year among adults—United States, 1990 and 1991. MMWR 1993;42:504-7.
9. CDC. Reducing the health consequences of smoking: 25 years of progress: a report of the Surgeon General. Rockville, Maryland: US Department of Health and Human Services, Public Health Service, 1989; DHHS publication no. (CDC)89-8411.
10. Bobo JK, Mcllvain HE, Lando HA, Walker RD, Leed-Kelly A. Effect of smoking cessation counseling on recovery from alcoholism: findings from a randomized community intervention trial. Addiction (in press).

Alcohol Involvement in Fatal Motor-Vehicle Crashes United States, 1995-1996

The table and figure on page 1155 compare alcohol involvement in fatal motorvehicle crashes for 1995 and 1996. A fatal crash is considered alcohol-related by the National Highway Traffic Safety Administration (NHTSA) if either a driver or nonoccupant (e.g., pedestrian) had a blood alcohol concentration (BAC) of $\geq 0.01 \mathrm{~g} / \mathrm{dL}$ in a police-reported traffic crash. Because BACs are not available for all persons in fatal crashes, NHTSA estimates the number of alcohol-related traffic fatalities based on a discriminant analysis of information from all cases for which driver or nonoccupant BAC data are available (1).

Overall, the number of alcohol-related traffic fatalities decreased by <1\% from 1995 to 1996 ; for BACs of $0.01-0.09 \mathrm{~g} / \mathrm{dL}$, the decrease was 0.5%, for BACs $\geq 0.10 \mathrm{~g} / \mathrm{dL}$ (the legal limit of intoxication for adults in most states), the decrease was 1.0%. A notable increase (9.8%) occurred among those aged 15-20 years where a driver or nonoccupant had a BAC $\geq 0.10 \mathrm{~g} / \mathrm{dL}$.

Reference

1. Klein TM. A method of estimating posterior BAC distributions for persons involved in fatal traffic accidents: final report. Washington, DC: US Department of Transportation, National Highway Traffic Safety Administration, 1986; report no. DOT-HS-807-094.

FIGURE I. Selected notifiable disease reports, comparison of provisional 4-week totals ending November 29, 1997, with historical data - United States

*Ratio of current 4-week total to mean of 154 -week totals (from previous, comparable, and subsequent 4 -week periods for the past 5 years). The point where the hatched area begins is based on the mean and two standard deviations of these 4-week totals.

TABLE I. Summary - provisional cases of selected notifiable diseases, United States, cumulative, week ending November 29, 1997 (48th Week)

	Cum. 1997		Cum. 1997
Anthrax	-	Plague	3
Brucellosis	71	Poliomyelitis, paralytic	1
Cholera	9	Psittacosis	36
Congenital rubella syndrome	4	Rabies, human	2
Cryptosporidiosis*	1,795	Rocky Mountain spotted fever (RMSF)	386
Diphtheria	5	Streptococcal disease, invasive Group A	1,271
Encephalitis: California*	112	Streptococcal toxic-shock syndrome*	29
eastern equine*	8	Syphilis, congenital ${ }^{\text {¢ }}$	525
St. Louis*	13	Tetanus	41
western equine*	,	Toxic-shock syndrome	120
Hansen Disease	103	Trichinosis	8
Hantavirus pulmonary syndrome* ${ }^{\text {+ }}$	17	Typhoid fever	322
Hemolytic uremic syndrome, post-diarrheal*	59	Yellow fever	-

[^3]\dagger Updated weekly from reports to the Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases (NCID) §Updated monthly to the Division of HIV/AIDS Prevention-Surveillance, and Epidemiology, National Center for HIV, STD, and TB Prevention (NCHSTP), last update November 25, 1997.
IOne suspected case of polio with onset in 1997 has also been reported to date.
**Updated from reports to the Division of STD Prevention, NCHSTP.

TABLE II. Provisional cases of selected notifiable diseases, United States, weeks ending November 29, 1997, and November 30, 1996 (48th Week)

Reporting Area	AIDS		Chlamydia		Escherichia coli 0157:H7		Gonorrhea		Hepatitis C/NA,NB			
			NETSS ${ }^{\dagger}$	PHLIS ${ }^{\text { }}$								
	$\begin{aligned} & \hline \text { Cum. } \\ & \text { 1997* } \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1996 \end{gathered}$			$\begin{aligned} & \hline \text { Cum. } \\ & 1997 \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1996 \end{gathered}$	$\begin{gathered} \hline \text { Cum. } \\ 1997 \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1997 \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1997 \end{gathered}$	$\begin{gathered} \hline \text { Cum. } \\ 1996 \end{gathered}$	$\begin{gathered} \hline \text { Cum. } \\ 1997 \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1996 \\ & \hline \end{aligned}$
UNITED STATES	53,031	62,102	426,300	399,219	2,191	1,473	265,001	295,548	2,873	3,214		
NEW ENGLAND	2,252	2,544	16,188	15,782	190	118	5,347	5,871	53	93		
Maine	51	42	912	838	17		61	50				
N.H.	40	85	725	697	12	14	83	150	8	7		
Vt.	32	19	385	361	8	3	46	43	2	24		
Mass.	808	1,249	6,789	6,292	103	86	1,978	1,991	36	56		
R.I.	142	166	1,725	1,706	10	-	377	462	7	6		
Conn.	1,179	983	5,652	5,888	40	15	2,802	3,175	-	-		
MID. ATLANTIC	16,043	17,301	55,774	53,730	131	47	34,697	39,408	324	277		
Upstate N.Y.	2,390	2,384	N	N	91		5,729	6,983	247	222		
N.Y. City	8,610	9,488	29,226	25,571	11	8	13,388	12,532		3		
N.J.	3,044	3,333	8,604	11,471	29	24	6,619	8,224		-		
Pa.	1,999	2,096	17,944	16,688	N	15	8,961	11,669	77	52		
E.N. CENTRAL	3,957	4,752	64,035	78,503	389	268	39,064	54,025	463	444		
Ohio	798	1,052	18,201	19,118	102	51	11,395	13,898	18	33		
Ind.	488	544	8,516	9,177	77	40	5,568	6,021	11	8		
III.	1,715	2,079	9,932	21,576	66	31	4,825	15,294	72	86		
Mich.	716	824	19,227	19,064	144	102	13,656	14,242	362	317		
Wis.	240	253	8,159	9,568	N	44	3,620	4,570	-	-		
W.N. CENTRAL	1,055	1,426	29,285	29,464	517	394	13,051	14,305	148	89		
Minn.	194	269	6,840	5,096	223	198	2,508	2,205	4	4		
lowa	100	82	3,943	3,960	116	74	1,018	1,077	32	40		
Mo.	505	741	11,043	11,420	53	66	6,893	7,903	96	22		
N. Dak.	12	12	623	901	15	12	44	32	3	-		
S. Dak.	8	12	1,134	1,331	28	32	129	165	-	$\overline{-}$		
Nebr.	90	93	2,110	2,580	59	-	870	996	3	8		
Kans.	146	217	3,592	4,176	23	12	1,589	1,927	10	15		
S. ATLANTIC	13,084	15,523	83,021	46,306	201	130	82,364	85,681	250	184		
Del.	214	264	1,276	1,148	5	4	1,133	1,349	-	1		
Md.	1,811	2,154	6,888	U	24	13	12,100	10,271	19	4		
D.C.	955	1,193	N	N	2	-	4,028	4,209	-	-		
Va.	1,113	1,095	10,417	10,798	N	41	7,819	8,428	24	16		
W. Va.	121	112	2,681	2,104	N	1	856	757	16	9		
N.C.	795	833	16,842	U	68	34	16,672	17,257	47	46		
S.C.	754	804	11,520	U	9	8	10,602	10,415	37	30		
Ga.	1,604	2,304	11,236	11,198	41	-	13,171	16,686	U	-		
Fla.	5,717	6,764	22,161	21,058	44	29	15,983	16,309	107	78		
E.S. CENTRAL	1,908	2,083	29,437	29,672	94	39	29,597	32,901	316	540		
Ky.	338	362	5,816	6,174	30		3,723	3,895	12	29		
Tenn.	745	737	11,627	12,295	46	39	10,187	10,985	221	372		
Ala.	512	569	7,817	7,763	14	-	10,949	12,448	11	8		
Miss.	313	415	4,177	3,440	4	-	4,738	5,573	72	131		
W.S. CENTRAL	5,663	6,275	55,261	54,513	67	16	36,574	36,213	465	354		
Ark.	216	245	2,296	1,591	9	5	3,953	3,656	10	8		
La.	997	1,367	9,388	6,790	6	3	9,069	7,365	219	202		
Okla.	275	245	6,779	6,777	10	5	4,398	4,429	7	1		
Tex.	4,175	4,418	36,798	39,355	42	3	19,154	20,763	229	143		
MOUNTAIN	1,527	1,794	21,889	24,005	235	137	7,716	6,923	444	527		
Mont.	41	34	1,005	1,139	24	-	46	34	21	18		
Idaho	50	36	1,470	1,399	35	23	133	93	63	96		
Wyo.	14	6	571	568	17	12	50	40	223	171		
Colo.	352	461	1,896	3,321	82	57	2,056	1,303	35	62		
N. Mex.	163	154	2,898	3,655	7	6	1,051	827	56	72		
Ariz.	374	535	10,550	9,852	N	29	3,596	3,406	25	69		
Utah	134	176	1,618	1,412	59	-	253	262	5	19		
Nev.	399	392	1,881	2,659	11	10	531	958	16	20		
PACIFIC	7,542	10,403	71,410	67,244	367	320	16,591	20,221	410	706		
Wash.	617	637	8,538	8,660	117	131	1,779	1,905	25	50		
Oreg.	286	438	4,569	4,993	76	89	684	790	3	8		
Calif.	6,510	9,128	55,389	50,749	162	89	13,343	16,689	233	445		
Alaska	40	30	1,330	1,196	12	3	329	403	$\bar{\square}$	3		
Hawaii	89	170	1,584	1,646	N	8	456	434	149	200		
Guam	2	4	193	337	N	-	27	61	-	6		
P.R.	1,975	2,166	U	U	41	U	515	601	141	141		
V.I.	95	18	N	N	N	U		,	-	-		
Amer. Samoa			-	-	N	U	-	${ }^{-}$	-	-		
C.N.M.I.	1	-	N	N	N	U	17	11	2	-		
N : Not notifiable	U: Unavailable \quad-: no reported cases				C.N.M.I.: Commonwealth of Northern Mariana Islands							
*Updated monthly to the Division of HIV/AIDS Prevention-Surveillance, and Epidemiology, National Center for HIV, STD, and TBPrevention, last update November 25, 1997 .¢ National Electronic Telecommunications System for Surveillance.§Public Health Laboratory Information System.												

TABLE II. (Cont'd.) Provisional cases of selected notifiable diseases, United States, weeks ending November 29, 1997, and November 30, 1996 (48th Week)

Reporting Area	Legionellosis		$\begin{aligned} & \text { Lyme } \\ & \text { Disease } \end{aligned}$		Malaria		Syphilis (Primary \& Secondary)		Tuberculosis		Rabies, Animal Cum. 1997
	$\begin{aligned} & \hline \text { Cum. } \\ & 1997 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1996 \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1997 \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1996 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1997 \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1996 \end{gathered}$	$\begin{gathered} \hline \text { Cum. } \\ 1997 \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1996 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1997 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1996 \end{aligned}$	
UNITED STATES	937	1,014	9,706	14,369	1,614	1,512	7,302	10,684	15,555	17,815	7,260
NEW ENGLAND	73	69	2,791	3,939	81	70	119	174	404	380	1,144
Maine	2	3	8	53	1	8	2	-	11	19	206
N.H.	7	4	37	46	8	3	-	1	15	14	43
V t.	12	5	8	23	2	8	-	-	5	1	110
Mass.	23	27	336	259	29	25	59	74	235	188	253
R.I.	12	30	385	503	10	8	2	4	31	28	34
Conn.	17	N	2,017	3,055	31	18	56	95	107	130	498
MID. ATLANTIC	199	224	5,595	8,850	398	436	338	486	2,872	3,287	1,541
Upstate N.Y.	65	69	2,263	4,103	62	80	35	71	405	412	1,134
N.Y. City	10	19	94	395	227	259	79	130	1,471	1,703	U
N.J.	20	14	1,354	1,957	77	65	119	167	616	679	174
Pa .	104	122	1,884	2,395	32	32	105	118	380	493	233
E.N. CENTRAL	274	330	93	406	127	162	618	1,520	1,445	1,842	175
Ohio	119	105	58	27	19	13	189	564	228	285	115
Ind.	46	50	29	30	16	14	148	196	139	172	13
III.	14	34	6	10	39	79	67	414	718	951	19
Mich.	81	99	-	20	39	40	128	176	247	343	28
Wis.	14	42	U	319	14	16	86	170	113	91	-
W.N. CENTRAL	71	61	143	211	58	42	167	323	492	452	440
Minn.	3	10	111	106	28	19	22	41	133	101	57
lowa	12	10	8	18	10	2	8	23	45	62	146
Mo.	32	18	17	47	11	10	106	217	216	180	24
N. Dak.	2	-	-	1	3	1	-	-	12	8	72
S. Dak.	2	3	1	-	1	-	-	-	10	17	62
Nebr.	15	15	2	5	1	3	5	10	17	21	2
Kans.	5	5	4	34	4	7	26	32	59	63	77
S. ATLANTIC	119	157	713	670	330	288	2,983	3,523	3,052	3,251	2,911
Del.	11	12	75	173	5	4	20	35	18	36	54
Md.	25	33	471	334	82	81	842	659	292	265	568
D.C.	4	7	9	3	20	8	102	120	92	123	5
Va .	25	37	61	49	64	55	220	363	275	293	625
W. Va.	N	N	10	11	1	6	3	9	49	50	82
N.C.	14	12	33	64	19	29	673	993	397	462	843
S.C.	8	6	2	6	18	12	346	361	248	317	174
Ga.	1	3	7	1	46	27	497	638	545	598	303
Fla.	30	47	45	29	75	66	280	345	1,136	1,107	257
E.S. CENTRAL	48	49	73	78	32	38	1,496	2,286	1,071	1,238	262
Ky.	7	9	9	26	8	10	123	148	169	215	27
Tenn.	33	20	40	20	8	14	678	788	357	422	144
Ala.	4	5	10	8	10	6	391	505	389	386	86
Miss.	4	15	14	24	6	8	304	845	156	215	5
W.S. CENTRAL	36	23	90	113	55	60	1,108	1,702	2,199	2,294	318
Ark.	-	1	25	22	5	1	130	231	171	182	54
La.	6	2	3	8	14	7	338	467	198	201	5
Okla.	7	10	27	22	8	-	112	169	159	154	104
Tex.	23	10	35	61	28	52	528	835	1,671	1,757	155
MOUNTAIN	62	51	21	8	64	58	179	141	438	571	181
Mont.	1	1	-	-	2	7	-	-	17	18	46
Idaho	2	7	4	1	-	-	1	4	13	7	-
Wyo.	1	7	5	3	2	7	-	2	2	6	31
Colo.	17	9	6	-	29	24	14	24	75	77	28
N. Mex.	3	2	1	1	8	2	16	7	53	79	12
Ariz.	12	19	2	-	11	7	134	83	202	220	50
Utah	19	6	1	1	3	5	5	2	30	51	6
Nev.	7	7	2	2	9	6	9	19	46	113	8
PACIFIC	55	50	187	94	469	358	294	529	3,582	4,500	288
Wash.	8	6	10	17	48	22	10	9	246	257	-
Oreg.		-	18	19	24	24	9	9	137	157	14
Calif.	46	38	157	57	387	299	273	507	2,993	3,832	250
Alaska	-	1	2	-	3	3	1	-	67	65	24
Hawaii	1	5	-	1	7	10	1	4	139	189	-
Guam	-	1	-	-	-	-	3	3	13	86	-
P.R.	-	-	-	-	5	2	217	198	212	182	63
V.I.	-	1	-	-		1			,		
Amer. Samoa	-	-	-	-	-	-	-	-	-	-	-
C.N.M.I.	-	-	-	-	-	-	9	1	2	-	-

TABLE III. Provisional cases of selected notifiable diseases preventable by vaccination, United States, weeks ending November 29, 1997, and November 30, 1996 (48th Week)

Reporting Area	H. influenzae, invasive		Hepatitis (Viral), by type				Measles (Rubeola)					
			A		B		Indigenous		Imported ${ }^{\dagger}$		Total	
	$\begin{aligned} & \hline \text { Cum. } \\ & \text { 1997* } \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1996 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1997 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1996 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1997 \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { Cum. } \\ 1996 \end{gathered}$	1997	$\begin{gathered} \hline \text { Cum. } \\ 1997 \\ \hline \end{gathered}$	1997	$\begin{aligned} & \hline \text { Cum. } \\ & 1997 \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1997 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1996 \end{aligned}$
UNITED STATES	950	925	25,741	26,540	8,060	9,017	1	72	-	55	127	491
NEW ENGLAND	56	32	589	391	141	202	-	11	-	8	19	16
Maine	5		59	22	6	2	-	-	-	1	1	-
N.H.	9	11	33	20	16	17	U	1	U	-	1	-
Vt.	3	1	13	12	7	13	-	-	-	-	-	2
Mass.	34	18	231	186	51	78	-	10	-	6	16	12
R.I.	3	2	127	22	16	10	-	-	-	-	-	-
Conn.	2	-	126	129	45	82	-	-	-	1	1	2
MID. ATLANTIC	127	191	1,749	1,809	1,201	1,290	-	18	-	8	26	37
Upstate N.Y.	34	46	330	409	282	312	-	2	-	3	5	11
N.Y. City	32	50	642	565	409	456	-	8	-	2	10	11
N.J.	42	56	246	346	200	262	-	3	-	-	3	3
Pa .	19	39	531	489	310	260	-	5	-	3	8	12
E.N. CENTRAL	145	168	2,552	2,384	824	996	-	6	-	3	9	20
Ohio	82	86	296	703	84	116	-	-	-	-	-	5
Ind.	14	13	297	338	90	128	-	-	-	-	-	-
III.	33	47	604	694	193	314	-	6	-	1	7	3
Mich.	15	11	1,215	466	414	353	-	-	-	2	2	3
Wis.	1	11	140	183	43	85	-	-	-	-	-	9
W.N. CENTRAL	60	38	2,006	2,399	431	492	-	12	-	5	17	23
Minn.	44	23	191	129	42	59	-	3	-	5	8	18
Iowa	7	4	437	312	43	66	-	-	-	-	-	1
Mo.	5	8	1,003	1,274	297	294	-	1	-	-	1	3
N. Dak.	-	-	10	138	4	2	-	-	-	-	-	-
S. Dak.	2	1	21	42	1	5	-	8	-	-	8	-
Nebr.	1	1	101	144	15	37	-	-	-	-	-	-
Kans.	1	1	243	360	29	29	-	-	-	-	-	1
S. ATLANTIC	157	168	1,897	1,280	1,171	1,228	1	2	-	13	15	11
Del.	-	2	30	21	6	9	-	-	-	-	-	1
Md.	56	60	205	228	170	158	-	-	-	2	2	2
D.C.	-	5	33	36	29	32	-	-	-	1	1	-
Va .	13	9	211	173	115	130	-	-	-	1	1	3
W. Va.	4	10	11	15	16	30	-	-	-	-	-	-
N.C.	21	25	188	167	245	316	-	-	-	2	2	2
S.C.	4	5	99	51	91	93	-	-	-	1	1	-
Ga.	32	34	559	149	126	32	-	-	-	1	1	2
Fla.	27	18	561	440	373	428	1	2	-	5	7	1
E.S. CENTRAL	45	25	572	1,189	642	836	-	-	-	-	-	2
Ky.	6	6	68	51	36	75	-	-	-	-	-	-
Tenn.	25	9	354	743	414	467	-	-	-	-	-	2
Ala.	14	9	82	189	72	72	-	-	-	-	-	-
Miss.	-	1	68	206	120	222	-	-	-	-	-	-
W.S. CENTRAL	49	39	5,387	5,293	1,163	1,141	-	3	-	5	8	26
Ark.	1	-	207	441	59	77	U	-	U	-	-	-
La.	13	4	223	184	164	145	-	-	-	-	-	-
Okla.	30	30	1,337	2,249	47	24	-	-	-	1	1	-
Tex.	5	5	3,620	2,419	893	895	-	3	-	4	7	26
MOUNTAIN	88	53	4,022	4,133	829	1,061	-	6	-	2	8	157
Mont.	-	1	69	110	12	16	-	-	-	-	-	-
Idaho	1	1	123	225	46	86	U	-	U	-	-	1
Wyo.	4	-	37	34	39	44	-	-	-	-	-	1
Colo.	18	15	388	467	144	122	-	-	-	-	-	7
N. Mex.	9	10	336	340	242	393	-	-	-	-	-	17
Ariz.	30	18	2,153	1,568	190	219	-	5	-	-	5	8
Utah	3	8	- 530	984	89	94	-	-	-	1	1	118
Nev.	23	-	386	405	67	87	-	1	-	1	2	5
PACIFIC	223	211	6,967	7,662	1,658	1,771	-	14	-	11	25	199
Wash.	5	4	599	691	70	97	-	1	-	1	2	38
Oreg.	31	29	350	824	101	123	-	-	-	-	-	14
Calif.	173	170	5,854	5,997	1,456	1,524	-	11	-	8	19	45
Alaska	7	6	32	44	21	15	-	-	-	-	-	63
Hawaii	7	2	132	106	10	12	-	2	-	2	4	39
Guam	-	-	-	7	3	1	U	-	U	-	-	-
P.R.	-	2	252	237	1,340	959	U	-	-	-	-	3
V.I.	-	2	-	36	1,340	41	U	-	U	-	-	-
Amer. Samoa	-	-	-	-	-	-	U	-	U	-	-	-
C.N.M.I.	6	10	1	1	34	5	U	1	U	-	1	-
N : Not notifiable	U: Un	ailable	-: no	orted c								

TABLE III. (Cont'd.) Provisional cases of selected notifiable diseases preventable by vaccination, United States, weeks ending November 29, 1997, and November 30, 1996 (48th Week)

Reporting Area	Meningococcal Disease		Mumps			Pertussis			Rubella		
	$\begin{aligned} & \hline \text { Cum. } \\ & 1997 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1996 \\ & \hline \end{aligned}$	1997	$\begin{aligned} & \hline \text { Cum. } \\ & 1997 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1996 \end{aligned}$	1997	$\begin{gathered} \hline \text { Cum. } \\ 1997 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1996 \\ & \hline \end{aligned}$	1997	$\begin{aligned} & \hline \text { Cum. } \\ & 1997 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Cum. } \\ & 1996 \end{aligned}$
UNITED STATES	2,873	2,994	6	548	650	54	4,744	6,227	-	157	221
NEW ENGLAND	183	139	-	11	1	2	826	1,607	-	1	27
Maine	17	13	-	-	-	-	7	49	-	-	-
N.H.	15	7	U	-	-	U	124	153	U	-	-
Vt.	4	4	-	-	-	1	217	208	-	-	2
Mass.	91	58	-	4	1	1	436	1,130	-	1	21
R.I.	19	14	-	6	-	-	16	32	-	-	-
Conn.	37	43	-	1	-	-	26	35	-	-	4
MID. ATLANTIC	294	322	-	51	84	-	339	583	-	31	13
Upstate N.Y.	65	83	-	9	24	-	124	350	-	4	5
N.Y. City	42	46	-	3	18	-	59	53	-	27	5
N.J.	63	68	-	6	4	-	9	31	-	-	2
Pa .	124	125	-	33	38	-	147	149	-	-	1
E.N. CENTRAL	412	423	1	67	120	8	435	719	-	5	3
Ohio	156	145	-	31	42	1	152	266	-	-	-
Ind.	51	57	-	12	8	-	55	81	-	-	-
III.	124	125	1	13	23	4	96	156	-	2	1
Mich.	49	44	-	11	44	3	49	52	-	-	2
Wis.	32	52	-	-	3	-	83	164	-	3	-
W.N. CENTRAL	211	214	-	17	21	14	466	391	-	-	-
Minn.	34	25	-	6	6	13	281	303	-	-	-
Iowa	45	46	-	9	3	1	92	19	-	-	-
Mo.	90	82	-	-	9	-	61	42	-	-	-
N. Dak.	2	4	-	-	2	-	2	1	-	-	-
S. Dak.	5	10	-	-	-	-	5	4	-	-	-
Nebr.	15	22	-	2	-	-	12	9	-	-	-
Kans.	20	25	-	-	1	-	13	13	-	-	-
S. ATLANTIC	520	568	1	79	104	8	420	624	-	83	91
Del.	5	2	-	-	-	-	1	24	-	-	-
Md.	42	56	-	7	33	1	115	249	-	-	-
D.C.	9	5	-	-	-	-	3	3	-	1	1
Va .	57	56	-	18	16	-	51	98	-	1	2
W. Va.	18	16	-	-	-	-	6	6	-	-	$-$
N.C.	88	74	1	11	20	3	118	97	-	59	77
S.C.	54	58	-	11	7	1	29	44	-	19	1
Ga.	100	128	-	10	3	-	13	19	-	-	-
Fla.	147	173	-	22	25	3	84	84	-	3	10
E.S. CENTRAL	219	218	-	27	20	1	127	194	-	-	2
Ky.	45	28	-	3	-	-	54	140	-	-	-
Tenn.	81	59	-	6	1	-	37	21	-	-	-
Ala.	74	81	-	9	4	1	28	24	-	-	2
Miss.	19	50	-	9	15	-	8	9	-	-	N
W.S. CENTRAL	272	306	-	60	52	-	247	145	-	4	8
Ark.	31	32	U	1	1	U	60	8	U	-	-
La.	47	57	-	14	17	-	19	9	-	-	1
Okla.	39	37	-	-	1	-	48	19	-	-	-
Tex.	155	180	-	45	33	-	120	109	-	4	7
MOUNTAIN	171	172	-	54	24	13	1,084	528	-	6	6
Mont.	9	9	-	-	-	-	19	35	-	-	-
Idaho	10	23	U	3	-	U	573	101	U	1	2
Wyo.	4	4	-	1	1	-	7	8	-	-	-
Colo.	46	39	-	3	4	-	285	228	-	-	2
N. Mex.	28	26	N	N	N	9	122	62	-	-	-
Ariz.	41	37	-	32	1	-	35	32	-	5	1
Utah	15	16	-	8	3	4	22	21	-	-	-
Nev.	18	18	-	7	15	-	21	41	-	-	1
PACIFIC	591	632	4	182	224	8	800	1,436	-	27	71
Wash.	81	92	-	19	21	8	364	660	-	5	15
Oreg.	119	114	N	N	N	-	19	60	-	-	1
Calif.	382	411	4	136	170	-	390	680	-	14	52
Alaska	2	9	-	4	3	-	14	3	-	-	,
Hawaii	7	6	-	23	30	-	13	33	-	8	3
Guam	1	4	U	1	10	U	-	-	U	-	-
P.R.	10	12	-	7	1	-	2	3	-	-	-
V.I.	-	-	U		2	U	-		U	-	-
Amer. Samoa	-	-	U	-	-	U	-	-	U	-	-
C.N.M.I.	-	-	U	4	-	U	-	-	U	-	-

TABLE IV. Deaths in 122 U.S. cities,* week ending November 29, 1997 (48th Week)

Reporting Area	All Causes, By Age (Years)						$\begin{aligned} & \text { P\&I }{ }^{\dagger} \\ & \text { Total } \end{aligned}$	Reporting Area	All Causes, By Age (Years)						$\begin{aligned} & \text { P\&I }{ }^{\dagger} \\ & \text { Total } \end{aligned}$
	$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	>65	45-64	25-44	1-24	<1			$\begin{gathered} \text { All } \\ \text { Ages } \end{gathered}$	>65	45-64	25-44	1-24	<1	
NEW ENGLAND	525	381	88	32	8	16	31	S. ATLANTIC	1,369	843	307	138	27	54	73
Boston, Mass.	152	104	21	14	4	9	12	Atlanta, Ga.	126	66	44	15	1		5
Bridgeport, Conn.	29	21	7			1		Baltimore, Md.	154	95	36	19	2	2	14
Cambridge, Mass.	16	14	1	1			1	Charlotte, N.C.	54	39	10	3	1	1	9
Fall River, Mass.	27	22	5			-	2	Jacksonville, Fla.	74	51	13	8	2	-	11
Hartford, Conn.	41	31	5	3	1	1	2	Miami, Fla.	106	57	32	14	1	2	-
Lowell, Mass.	20	8	7	4	1	-	-	Norfolk, Va.	50	34	4	6	-	6	1
Lynn, Mass.	10	9	1				1	Richmond, Va.	50	35	7	5	2	1	1
New Bedford, Mass.	13	8	3	2		$\overline{-}$	1	Savannah, Ga.	37	25	12	-	-	-	7
New Haven, Conn.	21	12	7			2	-	St. Petersburg, Fla.	59	48	5	5	1		3
Providence, R.I.	34	19	10	3	1	1		Tampa, Fla.	147	105	26	11	2	3	9
Somerville, Mass.	3	3						Washington, D.C.	492	281	108	49	15	39	13
Springfield, Mass.	51	43	5		1	2	1	Wilmington, Del.	20	7	10	3			
Waterbury, Conn.	38	28	8	2		-	4								
Worcester, Mass.	70	59	8	3		-	7	Birmingham, Ala.	105	458	117	43	13 3	10 3	37
MID. ATLANTIC	2,187	1,548	403	163	35	38	117	Chattanooga, Tenn.	58	42	11	2	2	1	2
Albany, N.Y.	46	37	5	2		2	4	Knoxville, Tenn.	91	67	11	10	1	2	5
Allentown, Pa.	12	12						Lexington, Ky.	48	35	10	1		2	4
Buffalo, N.Y.	61	48	9	3			3	Memphis, Tenn.	193	131	41	14	5	2	19
Camden, N.J.	31	15	10	3	2	1	5	Mobile, Ala.	25	20	4	1			
Elizabeth, N.J.	12	9	2			1		Montgomery, Ala.	39	30	4	4	1	-	4
Erie, Pa.	35	29	2	2	2	-	6	Nashville, Tenn.	78	58	14	5	1	-	-
Jersey City, N.J.	32	15	11	6											
New York City, N.Y.	1,268	885	234	111	18	20	42	W.S. CENTRAL	861	575	155	73	37	21	43
Newark, N.J.	U	U	U	U	U	U	U	Austin, Tex.	67	46	12	6	2	1	
Paterson, N.J.	8	3	5	$-$	-	-		Baton Rouge, La.	26	15	4	1	3	3	U
Philadelphia, Pa.	300	206	65	16	8	5	21	Corpus Christi, Tex.	109	63	23	11	6	6	2
Pittsburgh, Pa.§	64	40	14	7	1	2	4	Dallas, Tex.	109 85	63	23 13	11	6	6	2
Reading, Pa.	25	20	2	1	2	-	2	El Paso, Tex. Ft. Worth, Tex.	85 46	65 31	13 9	5 4	2	-	2
Rochester, N.Y.	105	78	19	6	1	1	12	Ft. Worth, Tex.	196					5	20
Schenectady, N.Y.	19	16	2	1	-	-	1	Houston, ${ }^{\text {Lex. }}$ Little Rock, Ark.	196 53	132 40	$\begin{array}{r}37 \\ \hline\end{array}$	18	4	1	4
Scranton, Pa.	30	28	2			$\overline{5}$	1	New Orleans, La.	45	17	9	10	9	1	4
Syracuse, N.Y.	85	66	10	3	1	5	14		119	84	20	10	3	2	4
Trenton, N.J.	38	25	11	2		-	2	Shreveport, La.	44	29	11	2	3	2	4
Yonkers, N.Y.	U	U	U	U	U	U	U	Tulsa, Okla.	71	53	8	5	4	1	4
E.N. CENTRAL	1,688	1,133	345	125	47	36	89	MOUNTAIN	805	553	161	53	20	17	62
Akron, Ohio	30	24	4	-	,	1		Albuquerque, N.M.	75	58	11	5	1	-	6
Canton, Ohio	39	30	9	-		-	3	Boise, Idaho	36	23	8	3	1	1	5
Chicago, III.	474	272	109	56	23	12	38	Colo. Springs, Colo.	27	19	4	4	-	-	1
Cincinnati, Ohio	49	30	14	3	1	1	1	Denver, Colo.	104	72	17	8	6	7	9
Cleveland, Ohio	149	99	32	9	3	6		Las Vegas, Nev.	149	97	34	11	6	1	6
Columbus, Ohio	159	107	34	12	2	4	8	Ogden, Utah	29	20	7	1	7	1	3
Dayton, Ohio	81	58	16	3	3	1	8	Phoenix, Ariz.	136	78	34	13	7	3	12
Detroit, Mich.	127	74	33	14	4	2	5	Pueblo, Colo.	24	19	3	1		1	2
Evansville, Ind.	40	29	7	4	-	-	3	Salt Lake City, Utah	89	68	12	4	4	1	11
Fort Wayne, Ind.	51	40	4	6	1	-	2	Tucson, Ariz.	136	99	31	3	1	2	7
Gary, Ind.	9	6	2	1	-	$\overline{7}$		PACIFIC	853	593	162	58	22	18	80
Grand Rapids, Mich.	73	58	8	3	3	1	7	Berkeley, Calif.	11	8	2	1	-	-	1
Indianapolis, Ind.	107	80	15	8	3	1	-	Fresno, Calif.	61	42	10	1	3	5	4
Lansing, Mich.	27	21	6	-	-	4	2	Glendale, Calif.	U	U	U	U	U	U	U
Milwaukee, Wis.	80	57	16	2	1	4	2	Honolulu, Hawaii	50	37	9	2		2	4
Peoria, III.	25	21	3	-	1	2	4	Long Beach, Calif.	61	37	10	9	4	1	11
Rockford, III.	45	32	10	1		2	1	Los Angeles, Calif.	U	U	U	U	U	U	U
South Bend, Ind.	35	24	8	2	-	1		Pasadena, Calif.	25	19	2	2	-	2	4
Toledo, Ohio	88	71	15	1	1	-	5	Portland, Oreg.	105	70	24	6	5	-	6
Youngstown, Ohio	U	U	U	U	U	U	U	Sacramento, Calif.	U	U	U	U	U	U	U
W.N. CENTRAL	548	363	100	45	11	12	25	San Diego, Calif.	89	68	12	5	2	2	12
Des Moines, lowa	U	U	U	U	U	U	U	San Francisco, Calif.	71 169	49 121	14	8	2	4	
Duluth, Minn.	24	19	2	2		1		San Jose, Calif.	169 28	121	32 4	10	2	4	16
Kansas City, Kans.	25	14	6	4	1	4		Santa Cruz, Calif.	28 84	22 50	22	1	1	-	3
Kansas City, Mo.	78	43	9	4	1	4	1	Seattle, Wash.	84 45	50 34	22 8	9	3 2	1	8
Lincoln, Nebr.	23	10	8	4	-	1	2	Spokane, Wash.	45 54	34 36	8 13	4	2	1	8
Minneapolis, Minn.	118	84	22	7	1	4	9	Tacoma, Wash.	54	36	13	4	-	1	6
Omaha, Nebr.	89	56	21	9	3	-	5	TOTAL	9,473	6,447	1,833	730	220	222	557
St. Louis, Mo.	72	50	13	6	2	1	-								
St. Paul, Minn.	67	50	12	2	2	1	5								
Wichita, Kans.	52	37	7	7	1	-	3								

${ }^{*}$ Mortality data in this table are voluntarily reported from 122 cities in the United States, most of which have populations of 100,000 or more. A death is reported by the place of its occurrence and by the week that the death certificate was filed. Fetal deaths are not included.
${ }^{\dagger}$ Preumonia and influenza.
${ }^{\S}$ Because of changes in reporting methods in this Pennsylvania city, these numbers are partial counts for the current week. Complete counts will be available in 4 to 6 weeks.
TTotal includes unknown ages.

Changes in the estimated number and percentage of traffic fatalities (including drivers, occupants, and nonoccupants), by age group* and highest blood alcohol concentration (BAC) ${ }^{\dagger}$ of driver ${ }^{\S}$ or nonoccupant in crashes - United States, January 1-December 31, 1995, compared with January 1-December 31, 1996

*Age was unknown for 84 traffic fatalities in 1995 and 130 traffic fatalities in 1996.
${ }^{\dagger}$ BAC distributions are estimates for drivers and nonoccupants involved in fatal crashes. Fatalities include all occupants and nonoccupants who died within 30 days of a motor-vehicle crash on a public roadway and whose age was known.
§Driver may or may not have been killed.
TAlthough usually too young to drive legally, persons in this age group are included for completeness.
**The number of fatalities for each BAC category is rounded to the nearest whole number.
Source: Fatality Analysis Reporting System, National Highway Traffic Safety Administration.

The Morbidity and Mortality Weekly Report (MMWR) Series is prepared by the Centers for Disease Control and Prevention (CDC) and is available free of charge in electronic format and on a paid subscription basis for paper copy. To receive an electronic copy on Friday of each week, send an e-mail message to listserv@listserv.cdc.gov. The body content should read SUBscribe mmwr-toc. Electronic copy also is available from CDC's World-Wide Web server at http://www.cdc.gov/ or from CDC's file transfer protocol server at ftp.cdc.gov. To subscribe for paper copy, contact Superintendent of Documents, U.S. Government Printing Office, Washington, DC 20402; telephone (202) 512-1800.

Data in the weekly MMWR are provisional, based on weekly reports to CDC by state health departments. The reporting week concludes at close of business on Friday; compiled data on a national basis are officially released to the public on the following Friday. Address inquiries about the MMWR Series, including material to be considered for publication, to: Editor, MMWR Series, Mailstop C-08, CDC, 1600 Clifton Rd., N.E., Atlanta, GA 30333; telephone (888) 232-3228.

All material in the MMWR Series is in the public domain and may be used and reprinted without permission; citation as to source, however, is appreciated.

Director, Centers for Disease Control
and Prevention
David Satcher, M.D., Ph.D.
Deputy Director, Centers for Disease Control and Prevention
Claire V. Broome, M.D.
Director, Epidemiology Program Office Stephen B. Thacker, M.D., M.Sc.

Editor, MMWR Series
Richard A. Goodman, M.D., M.P.H.
Managing Editor, MMWR (weekly) Karen L. Foster, M.A.
Writers-Editors, MMWR (weekly)
David C. Johnson
Darlene D. Rumph Person
Teresa F. Rutledge
Caran R. Wilbanks

స̂U.S. Government Printing Office: 1998-633-228/67043 Region IV

[^0]: *The national health objective for use of mammography is combined with clinical breast examination (CBE). Medicare does not pay specifically for CBE.

[^1]: *All persons responding to the BRFSS questionnaire were asked "Do you have any kind of health-care coverage, including health insurance, prepaid plans such as HMOs [health-maintenance organizations], or government plans such as Medicare?" A "yes" response was used as a proxy for Medicare coverage.
 ${ }^{\dagger}$ Vaccination received during the 12 months preceding the survey.
 ${ }^{\S}$ Vaccination received during their lifetime.
 \uparrow Service received during the previous 2 years.
 **Service received during the previous 3 years. Excludes women with no uterine cervix.
 ${ }^{\dagger \dagger}$ Confidence interval
 ${ }^{\S}$ Female respondents from California were excluded from these estimates because of the different wording of the survey questions in that state.

[^2]: Confidence interval
 ${ }^{\dagger}$ Numbers for other racial/ethnic groups were too small for meaningful analysis.

[^3]: Not noifia cases

